Sternengeschichten Folge 686: Der asymptotische Riesenast
Shownotes
**Sternengeschichten Folge 686: Der asymptotische Riesenast **
In dieser Folge der Sternengeschichten geht es zum asymptotischen Riesenast! Das klingt natürlich seltsam: Was soll ein Ast mit dem Weltraum zu tun haben und warum ist es ein Riesenast? Und warum ist er asymptotisch? Das werden wir alles klären - aber es geht natürlich nicht um den Ast eines Baumes, sondern um das, was ein Stern wie unsere Sonne macht, kurz bevor er aufhört, ein Stern zu sein. Der asymptotische Riesenast beschreibt die letzten Schritte im Leben eines Sterns und da passieren jede Menge spektakuläre Dinge.
Aber bevor wir zum Ast kommen, müssen wir uns ein wenig mit dem Stern beschäftigen. Alles was ich im folgenden sage, gilt für Sterne, die nicht allzu viel mehr Masse haben als unsere Sonne. Es geht um Sterne, mit circa einer halben Sonnenmasse, bis hin zum circa 8-fachen der Sonnenmasse. Nur sie verhalten sich so, wie ich es jetzt gleich erklären werde. Ich habe in den vergangenen Folgen der Sternengeschichten schon oft davon erzählt, was ein Stern wie unsere Sonne gegen Ende seines Lebens tut. Aber für diese Folge müssen wir uns das sehr viel genauer ansehen als bisher. Ein Stern fusioniert Wasserstoff zu Helium und erzeugt dadurch Energie. Das passiert aber nur im Kern des Sterns, weiter außen reicht die Temperatur dafür nicht aus. Wenn im Kern kaum Wasserstoff mehr übrig ist, dann wird logischerweise auch weniger Fusion stattfinden und es wird weniger Energie erzeugt, die in Form vom Strahlung nach außen dringen kann. Diese Strahlung ist aber quasi die Gegenkraft, die verhindert, dass der Stern unter seiner eigenen Masse in sich zusammenfällt. Wenn der Strahlungsdruck also geringer wird, fällt der Stern - oder genauer gesagt: Der Kern, der jetzt fast nur noch aus Helium besteht - in sich zusammen. Deswegen steigt dort die Dichte und es steigt die Temperatur. Weil der Kern jetzt heißer ist als vorher, heizt er auch die weiter außen liegenden Gasschichten des Sterns auf. Und dort befindet sich ja noch jede Menge Wasserstoff; Wasserstoff, der auf einmal ausreichend stark aufgeheizt wird, um fusionieren zu können. Oder anders gesagt: Wir haben jetzt einen Stern mit einem Kern aus Helium, das vorerst nichts macht, und drum herum eine Hülle aus Wasserstoff, der heiß genug ist, um zu Helium fusioniert zu werden.
Und es ist nicht nur heiß genug, es ist sogar noch heißer als es vorher im alten Kern war. Denn der neue Heliumkern ist viel kompakter und dichter; seine Gravitationskraft ist sehr stark und deswegen ist der Druck in der darüberliegenden Schale aus Wasserstoff ebenfalls sehr hoch und hoher Druck bedeutet immer auch eine hohe Temperatur. Der Wasserstoff, der jetzt in der Schale um den Kern herum fusioniert, tut das also unter extremeren Bedingungen; es wird sehr viel mehr Energie frei als früher und die muss irgendwie nach außen. Der jetzt stärkere Strahlungsdruck bläht den Stern auf. Er wird größer und seine Oberfläche dadurch kühler (weil sich die Energie dort jetzt über eine größere Fläche verteilt als vorher). Das Resultat: Wir haben einen Stern, der einerseits - außen! - kühler ist als vorher und gleichzeitig heller leuchtet, weil er viel größer ist. Ein Stern wie unsere Sonne, der vorher weiß-gelbliches Licht abgegeben hat, leuchtet nun im kühleren Rot und wird riesig. Oder anders gesagt: Er wird zu einem Roten Riesenstern.
Ist der Wasserstoff in der Schale aufgebraucht und zu Helium geworden, dann ist einerseits der Heliumkern dadurch größer geworden, noch dichter und noch heißer und andererseits kann dadurch die nächst-äußere Wasserstoffschicht zu fusionieren beginnen. Der Stern bläht sich noch mehr auf - und so weiter. Aber natürlich nicht ewig und so weiter. Was am Ende dieser Entwicklung, passiert habe ich in Folge 576 sehr ausführlich erklärt. Irgendwann wird es jetzt auch im Heliumkern so heiß, dass endlich auch die Heliumatome miteinander fusionieren können. Das passiert quasi schlagartig, und deswegen nennt man das auch den "Helium-Blitz". Ob und wie so ein Blitz stattfindet hängt übrigens von der Masse des Sterns ab, aber das wichtige ist: Wir haben jetzt einen Stern, der quasi doppelt fusionieren kann: Helium im Kern und Wasserstoff in einer Schale außen herum. Das ganze läuft jetzt wieder ein wenig stabiler ab; der Stern dehnt sich nicht mehr dramatisch aus; seine Oberfläche wird wieder ein wenig heißer; seine Helligkeit wächst nicht mehr dramatisch an. Aber auch diese Phase dauert nicht ewig, denn irgendwann ist das Helium im Kern durch die Fusion aufgebraucht. Jetzt passiert quasi das selbe wie vorhin, nur mit Helium anstatt Wasserstoff. Der Kern fällt in sich zusammen; es wird heiß genug, dass Helium in einer Schale um den Kern herum fusionieren kann (während noch weiter außen der Wasserstoff natürlich immer noch fusioniert und neues Helium produziert). Der Stern beginnt wieder, sich aufzublähen und seine Oberfläche kühlt weiter ab.
In Wahrheit sind die Vorgänge natürlich alle deutlich komplexer als ich sie beschrieben habe, aber das reicht fürs Erste. Es reicht auf jeden Fall, um jetzt endlich die Sache mit dem Riesenast zu klären. Und dafür müssen wir noch einen kurzen Ausflug zum Hertzsprung-Russell-Diagramm machen. Darüber habe ich in einer der allerersten Folgen der Sternengeschichten gesprochen. Dieses Diagramm ist eines der wichtigsten Instrumente in der Astronomie. Ganz simpel gesagt handelt es sich um ein Diagramm, bei dem auf der x-Achse die Temperatur des Sterns aufgetragen wird, und zwar so, dass hohe Temperaturen links sind und tiefe Temperaturen rechts. Auf der y-Achse trägt man die Helligkeit ein, so dass helle Sterne oben sind und weniger helle weiter unten. Ein Stern, der noch quasi mitten im Leben steht, ändert weder seine Helligkeit noch seine Temperatur - das ist ja alles im Gleichgewicht. Er hat in dieser Phase also einen fixen Platz im Diagram: Kühle Sterne leuchten schwach; heiße Sterne leuchten hell und wenn wir alle möglichen Sterne in so ein Diagramm einzeichnen, kriegen wir Punkte entlang einer Linie, die von links oben nach rechts unten verläuft. Diese Linie nennt man die "Hauptreihe", weil sie eben die Phase markiert, in der ein Stern den hauptsächlichen Teil seines Lebens verbringt.
Als ich vorhin von dem erzählt habe, was in den späten Phasen eines Sternenlebens passiert, habe ich auch immer wieder gesagt, dass die Leuchtkraft sinkt oder die Temperatur steigt, und so weiter. Das heißt aber auch: Wenn ein Stern in diese Endphase seines Lebens kommt, dann fängt er an, im Hertzsprung-Russell-Diagramm herumzuwandern. Die erste Phase die ich beschrieben habe, war die der Roten Riesen: Ein Stern wird kühler und gleichzeitig heller, weil er sich aufbläht. Im Hertzsprung-Russell-Diagramm entspricht das also einer Linie, die vom Startpunkt irgendwo auf der Hauptreihe nach rechts oben verläuft. Wenn dann der Heliumblitz einsetzt, wird der Stern ein klein wenig heißer und kaum noch heller. Er wandert im Diagramm jetzt also wieder ein Stück nach links und gleichzeitig nur wenig oder gar nicht nach oben. Die Linie knickt also fast horizontal nach links ab. Dann, wenn auch die Heliumschalen zu fusionieren beginnen, bläht sich der Stern wieder auf, wird wieder heller und kühler - und folgt im Laufe der Zeit einer Linie, die erneut nach rechts oben im Diagramm verläuft, fast parallel zur ersten Linie der er während der Phase als roter Riese gefolgt ist.
Ich weiß, es ist ein wenig schwierig sich das ohne Bilder vorzustellen. Aber ich habe das trotzdem so ausführlich erklärt, weil man nur so verstehen kann, was mit dem Begriff "Asymptotischer Riesenast" gemeint ist. Ich habe vorhin schon von der "Hauptreihe" geredet, dem Bereich im Hertzsprung-Russell-Diagramm, in dem sich die Sterne während ihrer normalen Lebensphase befinden. Und genau so wie man diesem Bereich einen Namen gegeben hat, haben auch die anderen Regionen Namen, in denen sich ein Stern während seiner Entwicklung befinden kann. Wenn man alle möglichen Linien einzeichnet, denen Sternen folgen können, dann sieht es fast so aus wie Äste, die aus der Hauptreihe herauswachsen und darum hat man sie auch so genannt. Die Linie, entlang der sich ein Stern während seiner Phase als Roter Riese nach rechts oben bewegt, heißt "Roter Riesenast". Wenn die dann horizontal nach links abknickt, weil der Heliumblitz eingesetzt hat, befindet sich der Stern auf dem "Horizontalast". Danach kommt er auf die Linie, die parallel neben dem Riesenast wieder nach rechts oben führt. Die eine Linie nähert sich also quasi der anderen an und man hat dafür den mathematischen Fachbegriff der Asymptote verwendet, auch wenn es streng genommen mathematisch nicht korrekt ist. Aber das kümmert die Astronomie in dem Fall nicht und man nennt die Linie, entlang der sich ein Stern in dieser Phase seines Lebens bewegt trotzdem den "Asymptotischen Riesenast". Auf englisch heißt das "asymptotic giant branch" oder kurz "AGB" und ein Stern, der gerade diese Entwicklung durchmacht wird AGB-Stern genannt.
Auch unsere Sonne wird diesem Weg folgen. In 5 bis 6 Milliarden Jahren wird sie die Hauptreihe verlassen und sich entlang des Roten Riesenastes entwickeln. Sie wird einen kurzen Schlenker am Horizontalast einlegen, bevor sie als AGB-Stern auf den Asymptotischen Riesenast einschwenkt. Und dann? Dann ist ihr Leben als Stern bald vorbei. Sie wird größer werden, als sie es als Roter Riese gewesen ist; ihr Inneres wird immer heißer werden und der Druck der Strahlung immer größer. Im Abstand von einigen zehn- bis hunderttausend Jahren werden mehrere Heliumblitze stattfinden, je nachdem in welcher Schale um den Kern das Helium gerade zu fusionieren beginnt. Dabei wird die freiwerdende Strahlung so viel Druck ausüben, dass sie sich nicht nur aufbläht, sondern Teile ihrer äußeren Schichten komplett hinaus ins All pustet. Sie verliert immer mehr Masse, wodurch in den Schalen um den Kern immer weniger bleibt, was fusionieren kann. Am Ende bleibt nur ein Kern übrig, in dem keine Fusion mehr stattfindet, der aber immer noch heiß genug ist, um die abgestoßenen Gasschichten zum Leuchten anzuregen. Das ist die Phase der "Planetarischen Nebel", von denen ich in Folge 303 ausführlich gesprochen habe und wenn die Gasschichten sich irgendwann verflüchtigt haben, bleibt nur der fusionslose Kern übrig beziehungsweise das, was wir einen "Weißen Zwerg" nennen. Aber weder einen weißer Zwerg noch einen planetarischen Nebel kann man als "Stern" bezeichnet. Das letzte Mal, das unsere Sonne diesen Status verdient hat, ist in ihrer Phase als AGB-Stern am Asymptotischen Riesenast.
Verglichen mit den Milliarden von Jahren, die ein Stern davor auf der Hauptreihe verbringt, ist die Zeit am Asymptotischen Riesenast verschwindend kurz. Dort verbringt er höchstens ein paar Millionen Jahren. Trotzdem passieren währenddessen in seinem Inneren so viele komplexe Dinge, dass die Erforschung der AGB-Sterne eine eigene Disziplin innerhalb der Astronomie ist. Die AGB-Phase der Sterne hat zum Beispiel die chemische Entwicklung des Universums massiv geprägt; viele chemische Elemente können nur in dieser kurzen Zeit unter diesen speziellen Bedingungen entstehen. Aber das ist wieder eine ganz andere Geschichte. Auch wenn Sterne nur kurze Zeit am Asymptotischen Riesenast verbringen, reicht es natürlich trotzdem um darüber noch sehr viel mehr Geschichten erzählen zu können.
Neuer Kommentar